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TECHNICAL MEMORANDUM

GLOBAL NONLINEAR OPTIMIZATION OF SPACECRAFT

PROTECTIVE STRUCTURES DESIGN

1. INTRODUCTION

1.1 Problem Background

The space station core module configuration, which includes habitation and laboratory mod-

ules, will be subject to a numl3er of harsh environs, including radiation, thermal, pressure, struc-

tural Ioadlngs at launch, and the topic of this study, meteoroid and space debris hypervelocity

impacts [1,2,3]. For the space station, which has an extended orbital lifetime and large surface and

projected areas, the pressure wall thicknesses of the core modules are often driven by these two

environs 14,51. Because this wall thickness contributes significantly to the structural weight of the

module, it is important to minimize its effect at launch while maintaining adequate protection for
the crew and equipment.

One method currently used in protective systems design to reduce the pressure wall thick-

ness is to add a thin burnper spaced outboard from the wall. For many space debris and meteoroid

projectile velocities, this bumper fragments the particle into smaller pieces which disperse behind
the bumper, making their impact with the wall less severe 16,71.

The optimum number, thicknesses, and materials lbr the bumpers is the subject of ongoing

research at NASA's Marshall Space Flight Center (MSFC). However, analytic predictor equations

and models do exist for the single bumper/single wall design as envisioned for the space station

14,5,6,71. These predictors, which vary greatly in li_rm, provide ballistic limit intk_rmation used to

design the bumper and pressure wall.

For a given predictor, there are many combinations of bumper and pressure wall thicknesses

that satisfy the model. In general, the thicker the bumper, the thinner the pressure wall, and vice

versa. However, the optimal combination is that set of thicknesses which mminlizes the module

weight. The determination of these thicknesses is a nonlinear optimization process.

1.2 Study Goal

The goal of this study is to determine the uniqueness and existence of the globally optimal

solution to the protective systems design problem formulated with the Nysmith impact predictor and

its constraints. A secondary goal is to discover qualitative features of several nonlinear optimization

techniques to determine lheir effectiveness in arriving at solutions to problems in this field.

.21



1.3 Study Approach

The problem is first formulated as a nonlinear optimization problem in Section 2. In Section

3, the equivalence and uniqueness of local and global optimal solutions to this problem is proven

using properties of convex sets and [unctions. Furthermore, an important feasibility condition which

limits the usage of the Nysmith predictor is established. The existence of the optimal solution is

shown in Section 4 using various solution techniques. Additionally, the analytical solution for this

optimum is provided for most of the feasibility region. Section 4 concludes with a qualitative

comparison of the optimization techniques considered. Finally, the sensitivity of the optimal design

to the systemic parameters is presented in Section 5.

2. PROTECTIVE SYSTEMS DESIGN PROBLEM FORMULATION

2.1 Introduction

The formulation of the optimization problem is a key process, the importance of which

cannot be overstated. Many of the assumptions made in this process have profound effects on the

problem solution. The choice of objective function will be made first, followed by the manipulation

of the problem constraints to proper form. Finally, the complete problem formulation is stated,

along with some remarks concerning the degree of difficulty in obtaining optimal solutions.

The Nysmith equation [6] may be written

, (I)

with inequality constraints

tl
-<0.5 (2)
d-

and

h < 1.0 (3)
d-

Note that this predictor does not include parameters lor bumper, wall, or projectile materials. This

is due to the fact that the experimental data used to derive the Nysmith predictor was based on

pyrex glass spheres impacting 2024-T3 aluminum bumpers and walls. Furthermore, note that d, h,



and V are positive-valuedparameterswith nolainal valuesdiscussedin Section4. Finally, con-
straints(2) and (3) representlimitationson bumperand wall thicknessesin terms of projectile

diameter.

2.2 The Choice of Weight Objective Function

Detailed weight functions based on the applicable spacecraft configuration may be derived to

any degree of representation and then minimized to reduce structural launch stresses and payload

weight. However, detailed weight functions tend to limit the generality of the analysis while

obscuring the mathematics. Furthermore, if the structural curvature of the spacecraft is relatively

small, and if the bumper and wall materials are fixed and identical, an appropriate weight function

is given simply by

W =q +t z
(4)

Substituting equation (I) results in

W=tl+

5.08V°278d 2'92

to.s2ah 1.39

(5)

Throughout this study, equation (5) will represent the spacecraft weight to be minimized with

respect to the independent variable t_.

2.3 Problem Constraints

The problem constraints must now be manipulated to proper form. Constraint (2) may be
rewritten

(6)

and substituting (1) into (3) and rearranging gives

t I >--
21.72 V°SV d3636

h 2.633
(7)



Equations (6) and (7) represent upper and lower bounds on the bumper thickness in terms of the

systemic parameters V, d, and h. Note that since V, d, and h are positive, so is the bumper
thickness.

2.4 Final Problem Formulation

The optimization problem may now be written:

Minimize: W from equation (5).

Subject to: Conditions (6) and (7), with independent variable, t_. Note that because this is

a constrained nonlinear optimization problem, traditional calculus tcchniques succeed only when a

local minimum happens to satisfy the constraint set.

3. EQUIVALENCE AND UNIQUENESS OF LOCAL AND GLOBAL OPTIMA

3.1 Introduction

In optimization problems, it is important to determine whether solutions fall into the

category of local or global optima. Simply put, a global optimal solution is optimal for all points

in the constraint set, while a local optimal solution may be optimal in only a small neighborhood

of itself. In this section, it will be shown that all local optimal solutions to the problem of Section

2.4 are global optimal solutions, and furthermore, that the global optimal solution to this problem

is unique. Existence and computation of the actual solution is deferred to Section 4.

3.2 Condition for a Nonempty Feasibility Set

The first step in this analysis is to determine when the problem is feasible. This corresponds

to the question: When is the constraint set defined by (6) and (7) nonempty? Clearly, this is the
case if

d 21.72V°527d3'636
-->

2 - h 2'633
(8)

or

d<_m
0.239h

V °'2 (9)
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Thus, if equation(9) is not satisfied,lhen there is no feasiblesolution to this problem. Note that
this feasibility condition placesa restrictionon the relativevaluesof the systemicparameters
associatedwith the physicsof the pr¢)blem.Thus, certain realisticphysical problemsareoutsidethe
realm of situationsthat may be modeledusing the Nysmith predictor.Equation(9) representsan
upperboundon the projectile diameterthat may beconsideredin this analysis.However, this con-
dition may be rewritten to find a lower boundon the separationbetweenbumperand wall as

h >4.184dV 02 (10)

Equation (10) is a more useful form of the feasibility condition, since the structural designer genre-

ally has more comrol over the bumper/wall separation than over the projectile diameter (or

velocity) that impacts the spacecraft.

3.3 Convexity of the Feasibility Set

When equation (10) holds, the feasibility set defined by (6) and (7) is nonempty. It is also

convex, as shown in the following !e:nma.

Lemma I: Consider tile sel S defined by, (6) and (7). Provided (10) holds, S is convex.

Proof: Equation (10) provides the required nonemptiness of S. Recall that nonempty S is
convex if for

t L _ S i I, 2

then

),.th + (1 - _.)tla _ S V)_ e [0, 1]

Suppose

tL _ S for i = 1,2

Then

5



and

q, >

21.72V°Srtd3636

h 2.633

for i = 1. 2 by (6) and (7). Suppose

X,_ [0, 11

Then

_dl+(1-_.)q2s +(1-_,) =_

Similarly,

_1, + (1 - _.)q, >-

21.72V° 527d3'636

h2,633

Therefore,

)_,tlt+ (1 - X)th e S ,

as desired. Thus, S is convex.

3.4 Strict Convexity of the Objective Function

Since the objective function W is a function of one independent variable, convexity may be

proven using techniques from the calculus of a single variable.

Lemma 2: W from equation (5) is strictly convex on S,

Proof:

2.682vO.278d 2.92
W'(tl) = 1 - (1 I)

t_5_h 1.39



4.098V°ZTsdzg2
W"(t,) = >.0 (12)

t_.528hl.39

since V, d, h, and t_ arc all positive. Thus, W is strictly convex on S.

3.5 Global Optimization Theorem

Theorem I: Suppose equation (10) is satisfied. Then any local optimal solution to the

problem of Section 2.4 is the unique global optimal solution to the problem.

Proof: if equation (10) is satisfied, then S defined by equations (6) and (7) ix nonempty.

Furthermore, S is convex from l.emma I. Also, W is strictly convex on S from Lemma 2. There-

fore, by Theorem 3.4.2 (part 21 ot Reference g, any local optimal solution to this problem is the

unique global optimal solution.

Note that this theorem says nothing about the existence of an optimal solution to the

problem or h_w¢ to find it. This wl',[ be addressed in the next section.

4. EXISTENCE OF OPTIMUM AND COMPARISON OF
OPTIMIZATION TECHNIQUES

4.1 Introduction

The conditions of existence of a local (and thus global) optimal solution to the problem will
now he established.

Theorem 2: If

d < 0.23h V -°2 (13)

then the optimal solution Io the problem of Section 2.4 exists and is given by

1.907 V°lS2d t.gl

go - h0.9t
(14)

3.613V°.lS2d TM

t_ = h0.91
(15)



5.520V°'IS2dl'91

W o- hO.91
(16)

Proof: Note first that equation (14) satisfies equation (I I). Also, substituting equation (14)

into equation (I) results in equation (15). Inserting equations (14) and (15) into (4) gives (16).

Thus, equations (14), (15), and (16) define the local optimal solution for the unconstrained

problem. Note, also, that since inequality (13) is satisfied, then so are inequalities (6) and (7), as

well as feasibility condition (10). Thus, by Theorem 1, equations (14), (15), and (16) define the

globally optimal solution under condition (13).

Note that the ratio of optimal bumper thickness to total thickness is 0.345. The correspond-

ing ratio for the wall is (}.655. Thus, provided the values of the systemic parameters satisfy equa-
tion (13), these ratios are constant.

Finally, notice that Theorem 2 provides optimality conditions for most of the feasibility

region. In fact, it is now only necessary to determine the existence of optimal solutions in the
interval

0.23h V -°'z < d < 0.24hV -'°2 {17)

This existence will be shown using various optimization methods.

The baseline systemic parameters for these analyses are determined from existing environ-

ment curves and data on mission risk and duration and velocity probability distributions lor the

space station core module configuration [2,5]. The dominant environment for this application is the

space debris environment. The corresponding parameters are

V = I0 km/s , d = 0.84 cm , and tt = 10 cm (18)

Note that these baseline parameters satisfy (13) and thus Theorem 2. Thus, the optimal baseline

solution as given by 114), (15), and (16) is

t_0= 0.256cm t2u= 0.484cm W 0 = 0.740cm (19)

These results will be confirmed with a number of optimization methods to follow. Detailed vari-

ations in the systemic parameters will be discussed in Section 5.

8



4.2 Problem Graph

Figure 1 shows the problem graph for the baseline case defined by equation (18). Note that

the maximum total thickness occurs at an interior point of the feasible solution region. Also, note

that the region is convex, and the objective function is strictly convex, as shown in Lemmas I and

2.

g

Ill
Z

0

,.I
<

0
P

2.5 _

2.0_

1.5_

1.0

0.5

0
0

t2_.d

._b-_ t 1 _.d/2

0.1 0,2 0.3 0.4 0.5 0.6

BUMPER THICKNESS (cm}

Figure I. l)eterminalion of optimal bumper thickness.

v

4.3 Six-Point Fibonacci Search

The Fibonacci search is a nonlinear, one-dimensional optimization technique which does not

require gradient calculations. This technique successively reduces the length of an initial interval of

uncertainty by logically updating search points located equidistant from the interval endpoints. A

practical discussion of this technique is found in Reference 9, and a more formal description is
tound in Reference 8. The success of this technique depends on the objective function being uni-

modal on the interval of interest. Since our objective function, W, is strictly convex on S, this

requirement is satisfied. The Fibonacci search is typically employed as an unconstrained technique.

However, constraints i6) and (71 in our study provide an initial interval of uncertainty from which

to proceed. Substituting conditions (18) into constraints (6) and (7) gives this interval as

O.09cm -<q <-0.42cm (2O)

9



A six-point Fibonaccisearchusesthe sixth and seventhnumbersof the Fibonaccisequence
to determinethe initial searchpoints. Recallthat thesenumbersare8 and 13. If the final two
searchpoints are requiredto be separatedby 0.1 cm or less, the right searchpoint is given by (see
Reference6)

xR = 8 (0.42 - 0.09)
13

, ,,6(0.1)
_-t-l) ---77-_+0.09 =0.3008

1,5

Since the left search point must be equidistant from the midpoint of the interval, it is given by

&=0.2_2

The objective function values are then computed and the less desirable subinterval is discarded.

Table l shows at each iteration the vatues of the interval endpoints, left and right search points.

and left and right objective function values. The approximate solutions are given by

tlo-O.2644cm t_-O.4764cm Wo-O.7408cm.

Thus, a six-point Fibonacci search results in a relative error in bumper thickness of about

3 percent.

Table 2 shows a case where equation (171) holds and Theorem 2 does not apply'. Here,

V = 10 km/s , tt = 10cm , and d = 1.46cm (21)

Thus, by (6) and (7), we have

0.67cm < tt < 0.73cm (22)

This results in the solution

qo=O.728cm t2= 1.401cm Wo= 2.129cm (23)

Note that the optimal bumper thickness satisfies (6) and (7). Thus, there do exist solutions in the

region defined by (17). However, there is not a defined analytic form for these solutions.

10



TABLE I. SIX-I'OINT FIB()NACCI SEARCH WITH C()NI)ITION (13) SATISFIED

a b XL X R _V t W R

0.0900 0.4200 0.2092 0.3008 0.7483 0.7458

0.2092 0.4200 0.3008 0.3284 0.7458 0.7532

0.2092 0.3284 0.2368 0.3008 0.7417 0.7458

0.2092 0.3008 0.2368 0.2732 0.7417 0.7414

0.2368 0.3008 0.2644 0.2732 0.7408 0.7414

TABLE 2. SIX-POINT FIBONACCI SEARCH WITH CONDITION {13) NOT SATISFIED

a b xL xR WL WR

0.6700 0.7300 0.6854 0.7146 2.1320 2.1297

0.6854 0.7300 0.7008 0.7146 2.1305

0.7008 0.7300 0.7146 0.7162 2.1297 2.1296

0.7146 0.7300 0.7162 0.7284 2.1296

0.7162 0.7300 0.7178 0.7284 2.1295 2.1292

11



4.4 Linearization

One promising technique for solving nonlinear optimization problems is to approximate the

nonlinear portion of the objective function using line segments 191. Conventional linear pro-

gramming techniques are then applied to solve the resulting problem. This technique works particu-

larly well for the problem at hand [10].

The relationship between bumper and wall thickness for the Nysmith equation may be

estimated linearly [9] by

+ Nt2 = t_ Y'i =l a :l, , (24)

t t = t_ + _,_t tt,
_25)

where the a,'s represent the slopes of the N line segments used to approximate the wall thickness

as a function of the bumper thickness. Thus. we may rewrite the formulation in Section 2.4 as

N
Minimize W =t] + Zs= (l (26}

with respect to t_,

-I'- Nsubject to t_ Y_i= l a, tl, < d (27)

<d
tl + ]_/u=t tl'-2 (28)

0 < q, < ZkY (29)

Note that the initial values for the bumper and wall are constant and may be removed from the

objective function. Furthermore. by picking the initial wall thickness as the projectile diameter, and

the initial bumper thickness corresponding to that choice of wall thickness, constraint (27) becomes

redundant, since the wall thickness is a monotonically decreasing function of the bumper thickness.

Thus. constraint (3) actually simplifies the linear programming process by providing a set of initial

conditions. Similarly, a check for ending the iteration should be given by constraint (2) which

12



correspondsto constraint(28). However, this constraintmay not be removedsince,aswill be
seen,there is no guaranteethat the numberof intervalsbetweenthe initial bumperthicknessand
d/2 is an integer.Thus, the final linearprogrammingproblemforraulationmay be written

Minimize W l = Y'.y=I(1 +ai)q, (3O)

with respect to t_

subject to y_.,i,v= d 1
1 tl, --<_--I l (31_

0-</1 -<,_¥
(32)

and based on this, the final solution is given by

W = W l+t_ +t2 l (33)

1 _ + u (34)t2 = t2 + Y.ui=l ait,, t, = t_ 2i =1 t,,

Note that this problem has N linearly independent variables and N + 1 constraints. This linear

programming problem is solved using a revised simplex algorithm as a subroutine in Protective

Systems Design - Linear Program (PSDI_,P). Note, however, that when the objective function

coefficients become positive (that is, when the slopes of the approximating line segments become

greater than -I) there is no longer incentive for selecting nonzero decision variables, since this is a

minimization problem.

Figure 2 depicts a four-segment linearization of the relationship between bumper and wall

thickness for the Nysmith predictor. Note, that in this case, the last line segment extends beyond

the constraint on bumper thickness. Also, the initial values for bumper and wall thicknesses are

given by the wall thickness constraint (3). Recall that the optimal solution is found at an extreme

point of the linearized model. This explains why increasing the number of segments improves the

accuracy of the solution: the probability of finding the optimal solution near an extreme point

increases with decreasing line segment interval length. Figure 3 shows how decreasing interval

length improves the accuracy of the optimal solution. Finally, the absolute error in optimal bumper

thickness as a function of the ratio of optimal bumper thickness to interval length is shown in

Figure 4. Nearly exact correlation between the two methods is found for an interval length of 0.01

cm, which corresponds to a 33 line segment approximation. Since problems with under I00 vari-

ables and constraints are considered "small" in the linear programming sense, the effectiveness of

this method appears to be quite good.

13
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Figure 2. Linearization of the Nysmith predictor using four segments.
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4.5 Geometric Programming

Geometric programming (GP) is a mathematically elegant and powerful optimization tech-

nique. It is based on the arithmetic-geometric inequality, and it transtorms any problem which fits

its form into a convex programming problem. Thus, any solution tound using this technique is

guaranteed to be the globally optimal solution. This fact means that the convexity analysis of

Section 2 is unnecessary for any problem falling into the GP lorm. Since not all problems suitable

for this form are convex, this property of GP typically provides increased confidence with less

effort in the optimal solution. The general form that GP accommodates is

a i a i a i

Minimize _,= ] cixl tx22...x, J (35)

a i a i a i
11 21

subject to 1 > gi = _',_ 11cixt x2 ""Xk " , (36)

where I = 1..... p, k is the number of independent variables, n is the number of polynomial terms

in the objective function, m l is the number of polynomial terms in constraint I, p is the number of

constraints, and all coefficients and independent variables are positive.

15



Form (35) has been denoted a polynomial by Zener and Duff in. two developers of this

method. Note that equations (5). (6). and (7) may be put in this form. where

k = 1 n = 2 . m l -- I = m2 p = 2 (37t

5.08 VO.ZqSd Z.92

c 1= 1, c2 - h t.39 ,

a t = 1, a 2 = -0.528,

2 21.7 2V°527d 3636

eli = _, eli - hZ633 ,

al, = 1, al_ =-1 ........

The general problem is then converted to the dual problem:

Maximize .:c+l +:.+ickier)) (38)

with

y T=,Sia0+_'=t(y._t,51,a,j,)=0 j=l,2, .... k (39)

and

E_'=__, = 1 (4O)

.... m/gi Ei=xtSi I=1,2 ..... p.

Substituting our problem variables into this form yields

(41)

Maximize v(_)(l]r"(czl'(2) s]'' ,6;,

=t ,J t2) tc, j (42)
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subjectto 51-0.52852+ 5]_- 512= 0 (43)

51+52= 1 (44)

5,, 52, 512>o

This is a 2 degree-of-difficulty problem, since there are two equations and tour unknowns.

Performing a two-dimensional search over the dual (prime) variables gives

(45)

51,--5; -0

_i]-0.346 52-0.654

v(5)-0.7413

(46)

Furthermore, since

q, = 6,v(5) t20 = v(5) - q0 , 147)

we have

tl. = 0.256cm tzo = 0.485cm W o = 0.741cm

as found approximately in equation (19).

4.6 Relative Merits of the Techniques

For a one-dimensional problem such as this one, the six-point Fibonacci search is computa-

tionally efficient, ttowever, like the graphic method, it provides no general analytical information
about the solution, as in Theorem 2. This is also true of the linearization method. However, it fits

nicely into standard linear programming packages. On the other hand, GP provides analytical

information about the form of the optimal solution, and gives the same results when condition (13)

(and thus, the Nysmith constraints) is satisfied. However, it too suffers in the case presented

because it transtorms an optimization problem with one independent variable into a problem involv-

ing a two-dimensional search for the dual variables. Hence, no single method is unconditionally

superior for this problem. Fortunately, tbr this particular problem, the results of Theorem 2 suffice

for most feasible sets of the systemic values, V, d, and h.
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5. OPTIMAL DESIGN SENSITIVITY TO SYSTEMIC VARIABLES

5.1 Introduction

The existence and uniqueness of the globally optimal solution to the problem of Section 2.4

has been shown. We now consider the effect of changes in the systemic parameters, V, d, and h,

on this solution. These changes affect solution feasibility [see equation (10)] and optimality (see
Theorem 2).

Figure 5 depicts the feasibility condition (10) in terms of the minimum separation between

bumper and wall versus projectile diameter for various projectile velocities. The region above each

line segment denotes feasibility. This condition must be checked prior to calculating the optimal
solution.

5.2 Projectile Velocity

Figure 6 shows the design sensitivity to projectile velocity for various projectile diameters

and a fixed bumper/wall separation of 10 cm. Note that in the high velocity region (10 to 16

kin/s), the optimal design does not vary significantly. Thus, optimal design increases with increas-
ing projectile velocity for the Nysmith predictor.

5.3 Projectile Diameter

Figure 7 shows the sensitivity of optimal design to projectile diameter for various bumper/

wall separations and a fixed projectile velocity of 10 km/s. Optimal design is sensitive to and

increases with projectile diameter. The stopping point on each curve represents the limitation on
projectile diameter given by (9).

5.4 Separation Between Bumper and Wall

Figure 8 shows the sensitivity of optimal design to bumper/wall separation [or various

projectile diameters and a fixed projectile velocity of 10 km/s. The shaded region to the left

represents the infeasibility area as determined from equation (10). Note that optimal design
decreases with increasing separation.
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6. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

6.1 Summary

The protective systems design problem was fornmlated as a nonlinear, single variable,

optimization problem with two constraints with the goal of minimizing the sum of the bumper and

wall thicknesses. A feasibility condition which defines the limitations on the usage of the Nysmith

predictor was developed in Section 3.2. It was then shown, using set and function convexity attri-

butes, that any local minimum to this problem is the unique global minimum solution. In Section

4, the existence of this minimum was shown (for problems which satisfy the feasibility condition,

of course), and several techniques were used to compare their relative effectiveness in finding the

solution. A theorem was also presented which provides the analytical solution for the global

minimum over most of the feasibility set. Finally, the effect of changes in the systemic parameters
on the optimal design was presented in Section 5.

6.2 Conclusions

The problem defined in Section 2.4 has a unique globally optimal solution, provided the

nonempty feasibility set condition (10) is satisfied. When condition (13) is satisfied, this optimal

solution may be expressed analytically. The six-point Fibonacci search provides the least computa-

tions in achieving the optimal solution, while the GP technique (and Theorem 2 when it applies)

provides the most insight into the general form of the solution. The optimal design increases with

increasing projectile velocity and diameter and decreases with increasing bumper/wall separation l_)r

the Nysmith predictor. The optimal thickness distribution for the Nysmith predictor is approxi-
mately 35 percent bumper and 65 percent wall.

6.3 Recommendations

A logical next step would be to determine the optimal design for a weight objective func-

tion expressed in terms of specific space station core module configuration parameters and compare

the results with this analysis. It is also important to perform design optimization and sensitivity

analyses for other available impact predictors to see how these differ from the Nysmith model.

Furthermore, the results should be correlated with current test data to determine regions of dis-

agreement. Finally, these design optimization methodooiogies should be applied to other space sta-
tion components.
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